Real-space electronic structure calculations with full-potential all-electron precision for transition metals

نویسندگان

  • Tomoya Ono
  • Marcus Heide
  • Nicolae Atodiresei
  • Paul Baumeister
  • Shigeru Tsukamoto
  • Stefan Blügel
چکیده

We have developed an efficient computational scheme utilizing the real-space finite-difference formalism and the projector augmented-wave PAW method to perform precise first-principles electronic-structure simulations based on the density-functional theory for systems containing transition metals with a modest computational effort. By combining the advantages of the time-saving double-grid technique and the Fourier-filtering procedure for the projectors of pseudopotentials, we can overcome the egg box effect in the computations even for first-row elements and transition metals, which is a problem of the real-space finite-difference formalism. In order to demonstrate the potential power in terms of precision and applicability of the present scheme, we have carried out simulations to examine several bulk properties and structural energy differences between different bulk phases of transition metals and have obtained excellent agreement with the results of other precise first-principles methods such as a plane-wave-based PAW method and an all-electron full-potential linearized augmented plane-wave FLAPW method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does One-third Scheme of PBE0 Functional Dominate Over PBE0 for Electronic Properties of Transition Metal Compounds?

The one-third paradigm of PBE0 density functional, PBE0-1/3, has shown to be a successful method for various properties. In this paper, the applicability of PBE0-1/3 is put into broader perspective for transition metals chemistry. As a comparative study, the performance of PBE0 and PBE0-1/3 has been assessed for geometries and vibrational frequencies of some transition metal hydrides and transi...

متن کامل

DFT and HF Studies: Geometry, Hydrogen Bonding, Vibrational Frequencies and Electronic Properties of Enaminones and Their Complexes with Transition Metals

Enaminones are those structures made up three various functional groups including carbonyl, alkeneand amine groups which arelocated along with each other in a conjugate fashion. These compoundsare of much attention due to special characteristics and numerous applications. In the paper, sixvarious enaminone structures were theoretically optimized and after concluding, were compared withequivalen...

متن کامل

Computation of interatomic Green functions for transition metals using continued fraction techniques

2014 Interatomic Green functions are computed here for transition metals using a real space technique, namely the recursion method The results for the case of the FCC structure are compared to those derived from band structure calculations using a k-space technique, namely the tetrahedron method. We show here that the agreement between both calculations is as good as for usual intra-atomic Gree...

متن کامل

OF THE MONTH Forces and Lattice Relaxations Calculated by aFull - Potential KKR - Green ' s Function

In this review we demonstrate that a recently developed full-potential KKR-Green's function method allows an eecient calculation of forces and lattice relaxations in transition metals. The forces can be readily evaluated by the ionic Hellmann-Feynman theorem, while the Green's functions for shifted positions can be obtained by angular momentum transformations. As applications we calculate the l...

متن کامل

خواص مغناطیسی نانولوله گالیوم آرسناید زیگزاگ (0,9) آلایش‌یافته با عناصر واسطه

of 3d transition metals (Sc, Ti, Cr, Mn , Fe, Co, Ni) in both far and close situations were studied based on spin polarised density functional theory using the generalized gradient approximation (LDA) with SIESTA code. The electronic structures show that zigzag (0,9) GaAs nanotubes are non-magnetic semiconductors with direct band gap. It was revealed that doping of 11.11 % Fe and Mn concentrati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010